Mitochondrial DNA reveals formation of nonhybrid frogs by natural matings between hemiclonal hybrids.

نویسندگان

  • H Hotz
  • P Beerli
  • C Spolsky
چکیده

The European water frog Rana esculenta (RL), a natural hybrid between R. ridibunda (RR) and R. lessonae (LL), reproduces by hybridogenesis: haploid gametes usually contain an intact chromosome set of R. ridibunda (R); the lessonae nuclear genome (L) is lost from the germ line. Hybridity is restored in the next generation, via fertilization by syntopic R. lessonae. Matings between two hybrids (RL x RL) usually give inviable R. ridibunda (RR) progeny. The adult R. ridibunda subpopulation of Trubeschloo, a gravel pit in northern Switzerland, consists only of females. Fragment patterns for mitochondrial DNA (mtDNA) of these R. ridibunda were identical with those of syntopic R. esculenta and of local populations of R. lessonae; they differed from the patterns in eastern European populations of R. lessonae and of R. ridibunda mtDNAs (3.7% and 9.3% estimated sequence divergence, respectively). In contrast, mtDNAs of two R. ridibunda from an introduced Swiss population with both sexes, although different (2.7% divergence) from each other, were typical R. ridibunda rather than R. lessonae mtDNAs. These data, together with unisexuality, demonstrate conclusively that the all-female R. ridibunda population at Trubeschloo originated from matings between two R. esculenta. The formation of independently reproducing R. ridibunda populations via such hybrid x hybrid matings is precluded because progeny of these matings are unisexual. Recombination in the regenerated fertile R. ridibunda females, followed by matings with R. lessonae, nevertheless provides a mechanism for meiotic reshuffling of genetic material in ridibunda haplotypes that is not typically available in hemiclonal lineages.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deleterious alleles and differential viability in progeny of natural hemiclonal frogs.

Abstract.-Spontaneous deleterious mutations are expected to accumulate through Muller's ratchet in clonally reproducing organisms and may lead to their extinction. We study deleterious mutations and their effects in a system of European frogs. Rana esculenta (RL), natural hybrids R. ridibunda (RR) X R. lessonae (LL), reproduce hemiclonally; both sexes exclude the L genome in the germ line and p...

متن کامل

DNA evidence for nonhybrid origins of parthenogenesis in natural populations of vertebrates.

Naturally occurring unisexual reproduction has been documented in less than 0.1% of all vertebrate species. Among vertebrates, true parthenogenesis is known only in squamate reptiles. In all vertebrate cases that have been carefully studied, the clonal or hemiclonal taxa have originated through hybridization between closely related sexual species. In contrast, parthenogenetic reproduction has a...

متن کامل

Karyological evidence of hybridogenesis in Greenlings (Teleostei: Hexagrammidae)

Two types of natural hybrids were discovered in populations of three Hexagrammos species (Teleostei: Hexagrammidae) distributed off the southern coast of Hokkaido in the North Pacific Ocean. Both hybrids reproduce by hybridogenesis, in which the maternal haploid genome is transmitted to offspring without recombination and the paternal haploid genome is eliminated during gametogenesis. While nat...

متن کامل

Directional introgression of mitochondrial DNA in a hybrid population of tree frogs: The influence of mating behavior.

A total of 305 individuals from a hybrid population of North American tree frogs was characterized for allozyme and mitochondrial DNA (mtDNA) genotype. Species-specific mating behaviors had suggested the potential for directional hybridization, in which matings between Hyla cinerea males and Hyla gratiosa females numerically predominate over the reciprocal combination. Such directional bias lea...

متن کامل

Origins of two hemiclonal hybrids among three Hexagrammos species (Teleostei: Hexagrammidae): genetic diversification through host switching

Two natural, hemiclonal hybrid strains were discovered in three Hexagrammos species. The natural hybrids, all of which were females that produced haploid eggs containing only the Hexagrammos octogrammus genome (maternal ancestor; hereafter Hoc), generated F1 hybrid-type offspring by fertilization with haploid sperm of Hexagrammos agrammus or Hexagrammos otakii (paternal species; Hag and Hot, re...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 9 4  شماره 

صفحات  -

تاریخ انتشار 1992